Kamis, 25 November 2010

Interferensi dan Difraksi cahaya

 Interferensi adalah interaksi antar gelombang di dalam suatu daerah. Interferensi dapat bersifat membangun dan merusak. Bersifat membangun jika beda fase kedua gelombang sama sehingga gelombang baru yang terbentuk adalah penjumlahan dari kedua gelombang tersebut. Bersifat merusak jika beda fasenya adalah 180 derajat, sehingga kedua gelombang saling menghilangkan.
Interferensi cahaya merupakan interaksi dua atau lebih gelombang cahaya yang menghasilkan suatu intensitas radiasi yang menyimpang dari jumlah masing-masing komponen radiasi gelombangnya. Interferensi menghasilkan suatu pola interferensi terang-gelap-terang-gelap. Secara prinsip interferensi merupakan proses superposisi gelombang / cahaya. Intensitas medan di suatu titik merupakan jumlah medan-medan yang bersuperposisi.
Interferensi cahaya merupakan perpaduan atau lebih sumber cahaya sehingga menghasilkan keadaan yang lebih terang (interferensi maksimum) dan keadaan yang gelap (interferensi minimum).syarat terjadinya interferensi cahaya adalah cahaya yang koheren.
Gambar 1 gelombang dari dua sumber bersuperposisi (Hecht, 2002)
Ketika kedua gelombang yang berpadu sefase (beda fase= 0, 2π, 4π,… atau beda lintasan = 0, λ, 2λ, 3λ, …) terjadi interferensi konstruktif (saling menguatkan).gelombang resultan memiliki amplitude maksimum.ketika kedua gelombang yang berpadu berlawanan fase (beda fase = π, 3π, 5π, … atau beda lintasan = 1/2λ, 3/2λ, 5/2λ,….) terjadi inetrferensi destruktif (saling melemahkan).gelombang resultan memiliki amplitude napatkan garis nol. Interferensi yang menguatkan akan menghasilkan pola terang dan interferensi saling melemahkan akan menghasilkan pola gelap. Pada interferensi maksimum pada layar didapatkan garis terang apabila beda jalan cahaya antara celah merupakan bilangan genap dari setengah panjang gelombang, sedangakan interferensi minimum pada layar didapatkan garis gelap apabila beda jalan antara kedua berkas cahaya merupakan bilangan ganjil dari setengah panjang gelombang.
Gambar 2 interferensi konstruktif dan destruktif
  • Interferensi dari Amplitudo
Interferensi ini terjadi karena gelombang cahaya atau sinar terefleksi dan terefraksi pada batas antara 2 media yang berbeda indeks biasnya. Sinar datang terefleksi dan terrefraksi komponennya dari pemisahan gelombang dan melalui perbedaan lintasan optik. Gelombang-gelombang tersebut berinterferensi ketika berkombinasi (superposisi).
Pertama kita mempertimbangkan efek interferensi yang dihasilkan dari pembagian amplitudo. Pada gambar 2.4 sebuah sinar monokromatik dengan panjang gelombang λ di udara datang dengan sudut i pada bidang paralel lempengan suatu material dengan tebal t dan indeks bias n > 1. sinar tersebut mengalami pantulan parsial dan pembiasan pada bagian atas permukaan. Sebagian pembiasan cahaya dipantulkan dari bagian permukaan bawah dan muncul paralel ke pemantulan pertama dengan beda fase ditemukan dari perbedaan panjang lintasan optis yang dilalui pada material. Sinar paralel ini bertemu dan berinterferensi pada keadaan tak terbatas tetapi mereka mungkin dibawa menuju fokus dengan lensa. Perbedaan panjang lintasan optik gelombang-gelombang ini ditunjukkan sebagai berikut
Karena sin i = n sin Θ
Gambar 3
Frinji interferensi dihasilkan pada kondisi tak terbatas dari pembagian amplitudo ketika tebal material konstan. Frinji orde ke-m adalah lingkaran terpusat dari sumber S dan terjadi untuk Θ konstan pada 2nt cos Θ =(m + 1/2) λ.
Ketika ketebalan t tidak konstan dan muka lempengan, gambar 2.6 a dan b, sinar interferensi tidak paralel namun bertemu pada titik (nyata atau maya) dekat dengan baji.Resultan interferensi frinji terbentuk dekat dengan baji dan hampir paralel dengan lapisan tipis bagian akhir dari baji. Ketika observasi  dibuat  pada  normal dari baji   cos q ~ 1 dan berubah perlahan pada daerah ini sehingga      2nt cos q » 2nt.   Kondisi    ini  untuk pola frinji terang lalu perumusannya menjadi:
2nt = (m + 1/2) λ                          [1]
Dan setiap frinji meletakkan nilai khusus dari ketebalan t dan ini memberikan pola frinji. Seperti nilai m berubah menjadi m+1, ketebalan berubah dengan kelipatan λ/2n dan frinji memungkinkan pengukuran panjang gelombang dari cahaya.(Pain, 2005)


Difraksi adalah penyebaran gelombang, contohnya cahaya, karena adanya halangan. Semakin kecil halangan, penyebaran gelombang semakin besar. Hal ini bisa diterangkan oleh prinsip Huygens. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling berinterferensi satu sama lain.
Untuk menganalisa atau mensimulasikan pola-pola tersebut, dapat digunakan Transformasi Fourier atau disebut juga dengan Fourier Optik.
Difraksi cahaya berturut-turut dipelajari antara lain oleh:
mλ = dsinθ
dimana d adalah jarak antara dua sumber muka gelombang, θ adalah sudut yang dibentuk antara fraksi muka gelombang urutan ke-m dengan sumbu normal muka gelombang fraksi mula-mula yang mempunyai urutan maksimum m = 0.[13]. Difraksi Fresnel kemudian dikenal sebagai near-field diffraction, yaitu difraksi yang terjadi dengan nilai m relatif kecil.
Difraksi Fresnel adalah pola gelombang pada titik (x,y,z) dengan persamaan:
 E(x,y,z)={z \over {i \lambda}} \iint{ 
E(x',y',0) \frac{e^{ikr}}{r^2}}dx'dy'
dimana:
 r=\sqrt{(x-x')^2+(y-y')^2+z^2} , dan
 i \, is the satuan imajiner.

Difraksi Fraunhofer

Dalam teori difraksi skalar (en:scalar diffraction theory), Difraksi Fraunhofer adalah pola gelombang yang terjadi pada jarak jauh (en:far field) menurut persamaan integral difraksi Fresnel sebagai berikut:
U(x,y) = \frac{e^{i k z} e^{\frac{ik}{2z} (x^2
 + y^2)}}{i \lambda z} \iint_{-\infty}^{\infty} \,u(x',y') e^{-i 
\frac{2\pi}{\lambda z}(x' x + y' y)}dx'\,dy'. [18]
Persamaan di atas menunjukkan bahwa pola gelombang pada difraksi Fresnel yang skalar menjadi planar pada difraksi Fraunhofer akibat jauhnya bidang pengamatan dari bidang halangan.

Difraksi celah tunggal


Pendekatan numerik dari pola difraksi pada sebuah celah dengan lebar empat kali panjang gelombang planar insidennya.

Grafik dan citra dari sebuah difraksi celah tunggal
Sebuah celah panjang dengan lebar infinitesimal akan mendifraksi sinar cahaya insiden menjadi deretan gelombang circular, dan muka gelombang yang lepas dari celah tersebut akan berupa gelombang silinder dengan intensitas yang uniform.
Secara umum, pada sebuah gelombang planar kompleks yang monokromatik \Psi^\prime dengan panjang gelombang &lambda yang melewati celah tunggal dengan lebar d yang terletak pada bidang x′-y′, difraksi yang terjadi pada arah radial r dapat dihitung dengan persamaan:
\Psi = \int_{\mathrm{slit}} \frac{i}{r\lambda}
 \Psi^\prime e^{-ikr}\,d\mathrm{slit}
dengan asumsi sumbu koordinaat tepat berada di tengah celah, x′ akan bernilai dari -d/2\, hingga +d/2\,, dan y′ dari 0 hingga \infty.
Jarak r dari celah berupa:
r = \sqrt{\left(x - x^\prime\right)^2 + 
y^{\prime2} + z^2}
r = z \left(1 + \frac{\left(x - 
x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}
Sebuah celah dengan lebar melebihi panjang gelombang akan mempunyai banyak sumber titik (en:point source) yang tersebar merata sepanjang lebar celah. Cahaya difraksi pada sudut tertentu adalah hasil interferensi dari setiap sumber titik dan jika fasa relatif dari interferensi ini bervariasi lebih dari 2π, maka akan terlihat minima dan maksima pada cahaya difraksi tersebut. Maksima dan minima adalah hasil interferensi gelombang konstruktif dan destruktif pada interferensi maksimal.
Difraksi Fresnel/difraksi jarak pendek yang terjadi pada celah dengan lebar empat kali panjang gelombang, cahaya dari sumber titik pada ujung atas celah akan berinterferensi destruktif dengan sumber titik yang berada di tengah celah. Jarak antara dua sumber titik tersebut adalah λ / 2. Deduksi persamaan dari pengamatan jarak antara tiap sumber titik destruktif adalah:
\frac{d \sin(\theta)}{2}
Minima pertama yang terjadi pada sudut &theta minimum adalah:
d\,\sin\theta_\text{min} = \lambda
Difraksi jarak jauh untuk pengamatan ini dapat dihitung berdasarkan persamaan integral difraksi Fraunhofer menjadi:
I(\theta) = I_0 \,\operatorname{sinc}^2 ( d 
\sin\theta / \lambda )
dimana fungsi sinc berupa sinc(x) = sin(px)/(px) if x ? 0, and sinc(0) = 1.

Difraksi celah ganda

Single & double slit experiment.jpg

Sketsa interferensi Thomas Young pada difraksi celah ganda yang diamati pada gelombang air.[19]
Pada mekanika kuantum, eksperimen celah ganda yang dilakukan oleh Thomas Young menunjukkan sifat yang tidak terpisahkan dari cahaya sebagai gelombang dan partikel. Sebuah sumber cahaya koheren yang menyinari bidang halangan dengan dua celah akan membentuk pola interferensi gelombang berupa pita cahaya yang terang dan gelap pada bidang pengamatan, walaupun demikian, pada bidang pengamatan, cahaya ditemukan terserap sebagai partikel diskrit yang disebut foton.[20][21]
Pita cahaya yang terang pada bidang pengamatan terjadi karena interferensi konstruktif, saat puncak gelombang (en:crest) berinterferensi dengan puncak gelombang yang lain, dan membentuk maksima. Pita cahaya yang gelap terjadi saat puncak gelombang berinterferensi dengan landasan gelombang (en:trough) dan menjadi minima. Interferensi konstruktif terjadi saat:
\frac{n\lambda}{a} = \frac{x}{L} 
\quad\Leftrightarrow\quad{n}{\lambda}=\frac{xa}{L}\;,
dimana
λ adalah panjang gelombang cahaya
a adalah jarak antar celah, jarak antara titik A dan B pada diagram di samping kanan
n is the order of maximum observed (central maximum is n = 0),
x adalah jarak antara pita cahaya dan central maximum (disebut juga fringe distance) pada bidang pengamatan
L adalah jarak antara celah dengan titik tengah bidang pengamatan
Persamaan ini adalah pendekatan untuk kondisi tertentu.[22] Persamaan matematika yang lebih rinci dari interferensi celah ganda dalam konteks mekanika kuantum dijelaskan pada dualitas Englert-Greenberger.

Difraksi celah majemuk


Difraksi celah ganda (atas) dan difraksi celah 5 dari sinar laser

Difraksi sinar laser pada celah majemuk

Pola difraksi dari sinar laser dengan panjang gelombang 633 nm laser melalui 150 celah

Diagram dari difraksi dengan jarak antar celah setara setengah panjang gelombang yang menyebabkan interferensi destruktif
Difraksi celah majemuk (en:Diffraction grating) secara matematis dapat dilihat sebagai interferensi banyak titik sumber cahaya, pada kondisi yang paling sederhana, yaitu yang terjadi pada dua celah dengan pendekatan Fraunhofer, perbedaan jarak antara dua celah dapat dilihat pada bidang pengamatan sebagai berikut:
\ \Delta S={a} \sin \theta
Dengan perhitungan maksima:
\ {a} \sin \theta = n \lambda     
dimana
\ n adalah urutan maksima
\ \lambda adalah panjang gelombang
\ a adalah jarak antar celah
and \ \theta adalah sudut terjadinya interferensi konstruktif

Dan persamaan minima:
 {a} \sin \theta = \lambda (n+1/2) \,.
Pada sinar insiden yang membentuk sudut θi terhadap bidang halangan, perhitungan maksima menjadi:
 a \left( \sin{\theta_n} + \sin{\theta_i} 
\right) = n \lambda.
Cahaya yang terdifraksi dari celah majemuk dapat dihitung dengan penjumlahan difraksi yang terjadi pada setiap celah berupa konvolusi dari pola difraksi dan interferensi.

Tidak ada komentar:

Posting Komentar